\(\int \sqrt {a+b \sec (e+f x)} \, dx\) [249]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 125 \[ \int \sqrt {a+b \sec (e+f x)} \, dx=-\frac {2 \cot (e+f x) \operatorname {EllipticPi}\left (\frac {a}{a+b},\arcsin \left (\frac {\sqrt {a+b}}{\sqrt {a+b \sec (e+f x)}}\right ),\frac {a-b}{a+b}\right ) \sqrt {-\frac {b (1-\sec (e+f x))}{a+b \sec (e+f x)}} \sqrt {\frac {b (1+\sec (e+f x))}{a+b \sec (e+f x)}} (a+b \sec (e+f x))}{\sqrt {a+b} f} \]

[Out]

-2*cot(f*x+e)*EllipticPi((a+b)^(1/2)/(a+b*sec(f*x+e))^(1/2),a/(a+b),((a-b)/(a+b))^(1/2))*(a+b*sec(f*x+e))*(-b*
(1-sec(f*x+e))/(a+b*sec(f*x+e)))^(1/2)*(b*(1+sec(f*x+e))/(a+b*sec(f*x+e)))^(1/2)/f/(a+b)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {3865} \[ \int \sqrt {a+b \sec (e+f x)} \, dx=-\frac {2 \cot (e+f x) \sqrt {-\frac {b (1-\sec (e+f x))}{a+b \sec (e+f x)}} \sqrt {\frac {b (\sec (e+f x)+1)}{a+b \sec (e+f x)}} (a+b \sec (e+f x)) \operatorname {EllipticPi}\left (\frac {a}{a+b},\arcsin \left (\frac {\sqrt {a+b}}{\sqrt {a+b \sec (e+f x)}}\right ),\frac {a-b}{a+b}\right )}{f \sqrt {a+b}} \]

[In]

Int[Sqrt[a + b*Sec[e + f*x]],x]

[Out]

(-2*Cot[e + f*x]*EllipticPi[a/(a + b), ArcSin[Sqrt[a + b]/Sqrt[a + b*Sec[e + f*x]]], (a - b)/(a + b)]*Sqrt[-((
b*(1 - Sec[e + f*x]))/(a + b*Sec[e + f*x]))]*Sqrt[(b*(1 + Sec[e + f*x]))/(a + b*Sec[e + f*x])]*(a + b*Sec[e +
f*x]))/(Sqrt[a + b]*f)

Rule 3865

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*((a + b*Csc[c + d*x])/(d*Rt[a + b, 2]*Cot[
c + d*x]))*Sqrt[b*((1 + Csc[c + d*x])/(a + b*Csc[c + d*x]))]*Sqrt[(-b)*((1 - Csc[c + d*x])/(a + b*Csc[c + d*x]
))]*EllipticPi[a/(a + b), ArcSin[Rt[a + b, 2]/Sqrt[a + b*Csc[c + d*x]]], (a - b)/(a + b)], x] /; FreeQ[{a, b,
c, d}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \cot (e+f x) \operatorname {EllipticPi}\left (\frac {a}{a+b},\arcsin \left (\frac {\sqrt {a+b}}{\sqrt {a+b \sec (e+f x)}}\right ),\frac {a-b}{a+b}\right ) \sqrt {-\frac {b (1-\sec (e+f x))}{a+b \sec (e+f x)}} \sqrt {\frac {b (1+\sec (e+f x))}{a+b \sec (e+f x)}} (a+b \sec (e+f x))}{\sqrt {a+b} f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.21 \[ \int \sqrt {a+b \sec (e+f x)} \, dx=\frac {4 \cos ^2\left (\frac {1}{2} (e+f x)\right ) \sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}} \sqrt {\frac {b+a \cos (e+f x)}{(a+b) (1+\cos (e+f x))}} \left ((-a+b) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (e+f x)\right )\right ),\frac {a-b}{a+b}\right )+2 a \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (e+f x)\right )\right ),\frac {a-b}{a+b}\right )\right ) \sqrt {a+b \sec (e+f x)}}{f (b+a \cos (e+f x))} \]

[In]

Integrate[Sqrt[a + b*Sec[e + f*x]],x]

[Out]

(4*Cos[(e + f*x)/2]^2*Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])]*Sqrt[(b + a*Cos[e + f*x])/((a + b)*(1 + Cos[e + f*
x]))]*((-a + b)*EllipticF[ArcSin[Tan[(e + f*x)/2]], (a - b)/(a + b)] + 2*a*EllipticPi[-1, ArcSin[Tan[(e + f*x)
/2]], (a - b)/(a + b)])*Sqrt[a + b*Sec[e + f*x]])/(f*(b + a*Cos[e + f*x]))

Maple [A] (verified)

Time = 6.61 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.46

method result size
default \(\frac {2 \left (\cos \left (f x +e \right )+1\right ) \left (\operatorname {EllipticF}\left (\cot \left (f x +e \right )-\csc \left (f x +e \right ), \sqrt {\frac {a -b}{a +b}}\right ) a -\operatorname {EllipticF}\left (\cot \left (f x +e \right )-\csc \left (f x +e \right ), \sqrt {\frac {a -b}{a +b}}\right ) b -2 a \operatorname {EllipticPi}\left (\cot \left (f x +e \right )-\csc \left (f x +e \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )}{\left (a +b \right ) \left (\cos \left (f x +e \right )+1\right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sqrt {a +b \sec \left (f x +e \right )}}{f \left (b +a \cos \left (f x +e \right )\right )}\) \(182\)

[In]

int((a+b*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/f*(cos(f*x+e)+1)*(EllipticF(cot(f*x+e)-csc(f*x+e),((a-b)/(a+b))^(1/2))*a-EllipticF(cot(f*x+e)-csc(f*x+e),((a
-b)/(a+b))^(1/2))*b-2*a*EllipticPi(cot(f*x+e)-csc(f*x+e),-1,((a-b)/(a+b))^(1/2)))*(1/(a+b)*(b+a*cos(f*x+e))/(c
os(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(a+b*sec(f*x+e))^(1/2)/(b+a*cos(f*x+e))

Fricas [F]

\[ \int \sqrt {a+b \sec (e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((a+b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e) + a), x)

Sympy [F]

\[ \int \sqrt {a+b \sec (e+f x)} \, dx=\int \sqrt {a + b \sec {\left (e + f x \right )}}\, dx \]

[In]

integrate((a+b*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)), x)

Maxima [F]

\[ \int \sqrt {a+b \sec (e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((a+b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e) + a), x)

Giac [F]

\[ \int \sqrt {a+b \sec (e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((a+b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec (e+f x)} \, dx=\int \sqrt {a+\frac {b}{\cos \left (e+f\,x\right )}} \,d x \]

[In]

int((a + b/cos(e + f*x))^(1/2),x)

[Out]

int((a + b/cos(e + f*x))^(1/2), x)